Lecture 3: Block Theory, Defect Groups, and Decomposition Matrix Structure

William Chuang, Based on Prof. Lux' Lectures and Navarro's Book

March 27, 2025

1. Introduction

In this lecture, we explore how the structure of modular representations is refined by decomposing character sets into *blocks*. Each block is associated with a subset of irreducible characters, Brauer characters, and a unique defect group. This gives deep insight into the nature of the decomposition matrix.

2. Blocks of G

Definition 1 (Block). Let G be a finite group and p a prime dividing |G|. A block B of G is a primitive idempotent in the center of the group algebra over a suitable modular system. Each block corresponds to a set of irreducible complex characters $Irr(B) \subseteq Irr(G)$ and a set of Brauer characters $IBr(B) \subseteq IBr(G)$.

The set of blocks is denoted Bl(G). Every $\chi \in Irr(G)$ lies in a unique block, and similarly for $\phi \in IBr(G)$.

3. Block Decomposition Matrix

The decomposition matrix $D = (d_{\chi\phi})$ respects the block decomposition. That is:

If $\chi \in \operatorname{Irr}(B)$ and $\phi \in \operatorname{IBr}(B')$, with $B \neq B'$, then $d_{\chi\phi} = 0$.

Hence, the global decomposition matrix is block-diagonal with each block corresponding to a separate $B \in Bl(G)$.

4. Defect Groups

Definition 2 (Defect Group). Let $B \in Bl(G)$. A p-subgroup $D \leq G$ is called a defect group of B if it controls the size and complexity of representations in the block. The defect of a character $\chi \in Irr(B)$ is defined by:

$$def_G(\chi) = n \text{ such that } \chi(1)_p = \frac{|G|_p}{p^n}.$$

The defect group is then a p-subgroup of order p^n .

Remark 1. Blocks with trivial defect groups (i.e., defect 0) contain a single irreducible character, which is projective. These are called blocks of defect zero.

5. Example: Symmetric Group S_n

Let $G = S_n$, the symmetric group. The block structure with respect to a prime p is governed by the partition theory of n, and each block corresponds to a p-core partition.

- The decomposition matrices for S_n are known explicitly for small n and exhibit block structure. - For instance, for S_4 and p = 2, there are 2 blocks: one with defect 2 and one with defect 0.

6. Structure of Decomposition Matrix in a Block

Theorem 1. Let $B \in Bl(G)$ be a block with defect group D. Then:

- The number of irreducible Brauer characters in B is equal to the number of isomorphism classes of simple kG-modules in the block.
- The number of projective indecomposables in B equals the number of IBr(B).
- The decomposition matrix D_B of the block B has full rank and is square if and only if the block is of full defect.

Example 1. Let B be a block with cyclic defect group. Then D_B is known to be triangular under a suitable ordering of rows and columns, and all simple modules are 1-dimensional.

7. Brauer Correspondence and Local Structure

Blocks are intimately connected to local subgroups.

Theorem 2 (Brauer's First Main Theorem (Sketch)). Each block $B \in Bl(G)$ with defect group D has a unique Brauer correspondent in $N_G(D)$, the normalizer of D, denoted $B_D \in Bl(N_G(D))$, such that they are "related" via the restriction and induction of characters.

8. Summary

- The decomposition matrix respects block structure: each block corresponds to a submatrix.
- Defect groups quantify the "size" of blocks and reflect local subgroup structure.
- Blocks of defect zero correspond to projective irreducible characters.
- The study of blocks bridges global representation theory and local subgroup data.

Next Lecture (Lecture 4 Preview)

In Lecture 4, we will:

- Study Brauer's three main theorems in detail,
- Investigate the Cartan matrix and its relation to decomposition matrices,
- Discuss the role of the Loewy series and the structure of projective modules.